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Abstract 

 

In this report, we continue our network analysis on the citation network of SCOTUS cases with 

heavy focus on centrality metrics and modeling. We initially discuss the transition from R into 

Python for our network analysis, notable Python packages, and web-scraping usage in Python. 

Then, we show our works for the PyData conference, such as on network visualization, data 

quality issues, and centrality analysis for legal precedence on SCOTUS. Finally, we show our 

logistic regression models and how they were assessed using rank-score, which was originally 

devised by Zanin et al. 

 

1 Network Data Storage in Python2 

 
First and foremost, Ph.D. candidate Iain Carmichael and I continued our previous work on the 

analysis of citation network of the Supreme Court of the United States with plans to present at 

the PyData Conference during September 15th. The conference was focused on Python tutorials 

and data science research involving Python. Thus, we thought it would be wise to switch from R 

to Python for our network analysis and use Python’s convenient network packages and web-

scraping tools.  

 

We first had to figure out a way to store the case metadata amongst all U.S. cases, which would 

later serve as the vertex attributes within an interested legal citation network. Using open source 

data from CourtListener, we accessed their readily available API 

(https://www.courtlistener.com/api/bulk-info/) and stored each case’s metadata as JSON files 

locally on our computers. Then, we compiled a master CSV file containing all U.S. legal case 

metadata (over one million cases and all 418 courts/jurisdictions covered [1]). The JSON files’ 

information on cited cases also allowed us to create a master edgelist file that contains every 

                                                           
1 Michael Kim and James Jushchuk are co-authors 
2 Network data storage work was done mostly by Iain Carmichael, but James and I did contribute to code review 
and to the understanding of web-scraping in Python 

https://www.courtlistener.com/api/bulk-info/
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citation relationship between two cases. The Pandas package made it easy to create several other 

CSV files of case metadata and edgelist that only pertains to a specified jurisdiction, i.e. 

SCOTUS (33,248 cases and 250,449 edges). 

 

2 Initial Network Exploration 

 
With the Python community’s wealth of contribution in the creation of numerous network 

analysis packages in Python, such as igraph, NetworkX, Graph-Tool, and Graphviz, it was 

difficult to choose the optimal one. We chose to rely on NetworkX for much of our earlier work 

due to its well-documented tutorials and guides to using the package and all of its individual 

functions. For example, every function’s purpose were clearly explained and reader friendly to 

those that may not come from a technical background. Any complex network terms and 

mathematical equations were properly explained and well-cited. They defined each parameter 

and their type(s) for every package function in layman fashion, as well as explain the return(s) 

and return type(s) of the function [2].  

 

Inspired by Fowler’s work [3], we decided to reproduce mean indegree (number of citations a 

case acquires) and outdegree distribution (number of times a case cites other cases) over time for 

both SCOTUS and the overall U.S. legal citation network.  
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For SCOTUS, both distributions followed a similar trend of overall increase over time with a 

slight dip near the beginning of the 21st century, which matches Fowler’s findings. However, the 

jump in indegree and outdegree for the overall U.S. legal citation network is much more drastic 

and happens much earlier compared to the respective degree distributions for SCOTUS, 

implying that the practice of case citations wasn’t as enforced for SCOTUS cases before ~1925. 

 

3 Visualization of SCOTUS Network 

 
When one plans to visualize their network through a default drawing function in a network 

analysis package, they may encounter long run-times for large networks, such as when using the 

spring layout in NetworkX (relies on the Fructerman-Reingold force-directed algorithm) for our 

SCOTUS network with 33,248 nodes and 250,449 edges. This is because the algorithm 

constantly recalculates the distance every node should be from one another, based on the number 

of nodes and their degree to effectively visualize the network, which means that the nodes are 

constantly getting rearranged in their coordinate position as the algorithm processes through each 

node [2]. Thus, even after the visualization processing is complete, most default layouts in most 

network packages return a clustered ball of nodes and edges that do not convey too much 

information, especially for larger netowrks. 

 

However, using NetworkX’s powerful visualization tools and fixing the nodes’ (individual cases) 

positions by an interested centrality measure and case date allows for quick and meaningful 

network graph output (in this case, indegree vs. time): 

 
 

4 Example of Data Quality Problem 

 
We faced several data quality issues in the past couple months on our project of the SCOTUS 

network, mostly due to the fault of the citation parser of CourtListener. For example, we 
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identified at least 15 edges that had cases citing forward in time (citing cases in the future) and 

just recently, we discovered that some of these cases do not contain any opinions or case text.  

 

With the help of our law student collaborator, James Wudel, we noticed that one glaring example 

of bad data is the U.S. Detroit v. Timber and Lumbar Company with an indegree of 

approximately 600 (cited ~600 times), which is shown clearly in the plot above. Although we 

initially believed this to be an extremely important case, as it has around twice as many citations 

as the second-most cited case, we later discovered that the CourtListener citation parser 

accidentally picked up a reporter’s footnote that refers to this case as a citation. We expressed 

this problem at the conference [4]. 

 

5 Centrality (igraph vs. NetworkX) 

 
Although visualization of networks in scatterplot fashion are easily done in NetworkX due to its 

well-documented graphing tools, the package faces problems when acquiring the centrality 

measures for large networks, like this SCOTUS network. Two examples of this are the closeness 

centrality (takes ~3500 seconds to compute closeness for every SCOTUS case) and betweenness 

centrality (takes ~19000 seconds to compute betweenness for every SCOTUS case). We believe 

the reason for the lengthy run times for these two centralities was partly due to the centrality 

measures having to rely on every other vertex in the network (explained below in section 6.1). 

This incentivized our research group to switch to igraph, a Python network analysis package 

which has significantly worse documentation but much faster run times for most of its functions 

due to most of the algorithms being written under C rather than Python. After this switch, 

computing closeness and betweenness centralities took mere minutes. We note that they still held 

significantly longer run times compared to the seconds it takes to compute other centralities. 

Although we still did most of our visualization work for the PyData Conference through 

NetworkX, we used mostly igraph for much of our later work, since they do not require fancy 

visualization. Ultimately, we computed all of our centrality measure for SCOTUS through igraph 

and saved it as a CSV file for easy, future access. 

 

6 Summary of Centrality Findings Presented at Conference 

 
We focused primarily on how legal precedence could be predicted by centrality measures: 

 

6.1 Closeness Centrality and Betweenness Centrality 

As explained by Kolaczyk [5] and from our presentation [4], closeness centrality of vertex V is 

measured by how “close” V is to all other vertices. The denominator below represents the sum of 

the shortest path distances from V to all other nodes, which means that short distances imply 

higher centrality. 

 

 
 

We found out that closeness centrality should be measured on the undirected form of SCOTUS 

due to its mathematical definition and by viewing its distribution over time. With the help of our 
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law student collaborator, James Wudel, we found out that closeness centrality tended to favor 

procedural cases, cases that explain how bodies of law work or operate [4]. Betweenness 

centrality (how “between” V is to all other vertices) was also measured on undirected SCOTUS 

and favored procedural cases. 

 

6.2 PageRank 

On the directed network, we found out that PageRank favored “older cases that precede 

important cases” [4]. More about PageRank will be explained later. 

 

6.3 Hubs/Authorities and Eigenvector Centrality 

Both centrality measures both concern cases that are cited by other “important” cases, so the 

definition is recursive in nature. However, as noted by the NetworkX documentation, 

Hubs/Authorities is to be measured on directed SCOTUS, whereas Eigenvector Centrality is to 

be measured on undirected SCOTUS [2]. Surprisingly, both centrality measures favored cases 

concerning the First Amendment [4]. 

 

6.4 Top Ten cases by Centrality Measures (Case-ID’s shown correspond to JSON files) 

 

 In-

Degree 

Out-

Degree 

Closeness 

Centrality 

Eigenvector 

Centrality 

Betweenness 

Centrality 

Page 

Rank 
Hubs Authorities 

Rank 

1 
96405 105210 102605 106514 96405 85131 108611 103355 

Rank 

2 
109532 104616 103012 103355 103012 91573 107082 106514 

Rank 

3 
107252 106366 101864 109380 101864 85534 109380 103243 

Rank 

4 
91573 102224 106366 106761 102605 88661 106267 106761 

Rank 

5 
106545 108329 96405 103243 106366 85160 108839 103347 

Rank 

6 
111221 101864 101894 107082 101894 89675 108798 105746 

Rank 

7 
102605 106267 85330 103347 106447 98094 109505 105751 

Rank 

8 
103012 106548 106170 105751 104616 88804 109836 102991 

Rank 

9 
103355 97966 106447 105746 106545 85330 149702 103870 

Rank 

10 
106761 108221 103950 106142 106548 87010 108329 101097 
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The full presentation can be found here: 

https://www.youtube.com/watch?v=AP7_godzwVI&t=937s  

 

Preview of Iain Carmichael starting off the presentation: 

 
 

7 Motivation for PageRank (and Indegree) for Our Later Models 

 
We found it necessary to use metrics to model and evaluate how influential certain cases are in 

the large networks we created from the citations of legal cases. Indegree, PageRank, closeness, 

and betweenness are all metrics that are supported by the igraph coding library, however, the 

runtimes of these metrics affect how applicable they are to our research. A simple block of code 

(see below) we ran shows each of these metrics on the same SCOTUS network, and it reveals the 

disparity in runtimes: 

 
IGRAPH DN-- 33248 250465 --  

+ attr: court (v), name (v), year (v) 

Runtime of PageRank: 0.151999950409 seconds 

Runtime of Indegree: 0.00100016593933 seconds 

Runtime of Betweenness: 46.896999836 seconds 

Runtime of Closeness: 173.968999863 seconds 

 

Clearly closeness and betweenness take much longer than the other two metrics to execute, and 

when we require these metrics to be run repeatedly their runtimes can become impractical. 

Although indegree appears to be even faster than PageRank, PageRank provides a different 

interpretation of a case in the network that takes into account more than simply the number of 

neighbors it has. If indegree is thought of as the number of cases that “vote” (i.e. cite) a 

particular case, then PageRank can be through of as  taking into account that “votes cast by 

[cases] that are themselves ‘important’ weigh more heavily and help to make other [cases] 

https://www.youtube.com/watch?v=AP7_godzwVI&t=937s
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‘important’”[6]. For now, both indegree and PageRank are valuable metrics and are worth 

implementing in our research due to their very efficient runtimes. 

 

8 Implementing the PageRank Algorithm 

 
We wanted to implement the PageRank algorithm ourselves, even though a perfectly good 

implementation already existed in the igraph library because the igraph implementation lacked 

customization. That implementation had limited options to change the core of the PageRank 

algorithm, and in our research the ability to tweak the algorithm would be beneficial, i.e. we 

want to innovate a modified one that takes into account for time decaying patterns in the 

network, so PageRank doesn’t heavily favor older cases all the time in a DAG (directed acyclic 

graph). 

 

Murphy’s Machine learning: A probabilistic perspective [7] was invaluable for coding our 

version of the PageRank algorithm, and it outlined all the steps required that we detail in this 

section. As described in Murphy’s text, PageRank can be thought of as the probability a path 

through the network ends up at a particular node, if the path is determined by following citations 

of the current case with a small change of randomly jumping to any case in the network. This 

process of creating paths through the network can be encapsulated by a transition matrix M. This 

matrix M is the core design of the PageRank algorithm. M is then used to find its first 

eigenvector. This eigenvector is of size 1xn where n is the number of cases in a network, and 

each element in this vector is a PageRank of a case. So the largest challenge of implementing the 

PageRank algorithm was creating the matrix M, which is of the form [7]:  

 

𝑀𝑖𝑗 = {
𝑝𝐺𝑖𝑗/𝑐𝑗 +  𝛿 if 𝑐𝑗 ≠ 0

1/𝑛                 if 𝑐𝑗 ≠ 0
 

 

• Where p is the probability at any given case the next case in the path is one of the 

outward citations (i.e. there is a 1 – p probability that the next case will be a random one 

in the network) 

• 𝐺𝑖𝑗 is 1 if there exists a citation from case i to case j 

• 𝑐𝑗 represents the outdegree (number of citations) of case j 

• n is the number of cases 

• 𝛿 is of the form (1 − 𝑝)/𝑛.  

 

To develop this transition matrix, we first had to receive as input an adjacency matrix of a given 

citation network. This represents G, and we also defined n, p, and 𝛿. The next step was to 

efficiently represent M by defining two more variables: a diagonal matrix D and a vector z. D 

was created by defining the element 𝑑𝑗𝑗 as 1/𝑐𝑗 if there case j had any outward citations, and 0 

otherwise. z was created by defining each element 𝑧𝑗 as 𝛿 if the same condition as above was true 

(case j has a least one outward citation) and 0 is case j  did not have any outward citations. With 

all these variables defined, we could compactly define M as [7]: 

 

M = 𝑝GD + 1𝑧𝑇 
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Lastly, we had to apply the power method to determine the first eigenvector of M. This relatively 

simple process involved us calculating the product of Mv, where v is an arbitrary vector of length 

n. That product becomes the new v, which is once again multiplied with M. This process 

continues until the product v has converged. From out tests this would occur around 14 iterations 

of the process for a small network and up to 70 iterations for a large network such as all 

SCOTUS cases. This converged vector v would then contain the PageRank of each case in the 

network [7]. 

 

Because Murphy did such an excellent job defining the PageRank algorithm in his textbook, the 

largest challenge we faced was defining all the variables in the proper form. For example, the 

adjacency matrix we received as input had a value of 1 in the element 𝐴𝑖𝑗 if case i cited case j, 

but when it was defined in Murphy’s text, it was the opposite relation. That required us to 

transpose the matrix A. Although our implementation of PageRank was functionally correct (we 

confirmed this by comparing our PageRank values with igraph’s), it had a slower runtime. It 

would take factors longer than igraph’s implementation, and so even though we wanted more 

customization of PageRank for our research, it ended up being the case the runtime was too slow 

to justify the benefits of customization. Still, implementing the PageRank algorithm was a 

valuable lesson in understanding how the metrics we use work, and practicing proper coding 

guidelines (commenting, proper variable naming) while interpreting explanations of code from 

textbooks. 

 

Our code for PageRank Implementation can be found at: https://github.com/idc9/law-

net/blob/jamesjushchuk/explore/James/pagerank.ipynb 

 

9 Data Frames, Logistic Regression, Rank-Score 

 
After the PyData conference, our group focused on working towards a novel, legal case ranking 

system based on statistics/machine-learning techniques, such as logistic regression and cross 

validation. We planned to build numerous models and select the best one through the rank-score 

system inspired by Zanin, et al. [8]. 

 

The procedure in building our logistic regression models on different combinations of centrality 

metrics is complex, so the steps will be laid out in chronological order: 

 

1. We created SCOTUS subgraphs G1900, G1910, …, G2020, where G1900 indicates the SCOTUS 

subgraph that only includes cases with years up to and including 1900. Therefore, G2020 would be 

the entire SCOTUS network. 

 
1900 :  10446 vertices and  25673  edges 

1910 :  12463 vertices and  37863  edges 

1920 :  14880 vertices and  52273  edges 

1930 :  16887 vertices and  67360  edges 

1940 :  18585 vertices and  86575  edges 

1950 :  20079 vertices and  106643  edges 

1960 :  21329 vertices and  118368  edges 

1970 :  23642 vertices and  136683  edges 

1980 :  25734 vertices and  166571  edges 

https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/pagerank.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/pagerank.ipynb
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1990 :  27848 vertices and  199816  edges 

2000 :  29206 vertices and  221711  edges 

2010 :  32505 vertices and  238165  edges 

2020 :  33248 vertices and  250449  edges 

 

2. We created vertex data frames for each of the SCOTUS subgraphs above, which consists of 

the vertices and their centrality metrics. For now, we created vertex data frames only including 

indegree and PageRank, but we do intend to later include more centrality metrics along with 

accounting for time-decay for some of these metrics, especially for indegree and PageRank. Here 

is the vertex data frame for G1950 (V_DF1950). 

 
   name    year  indegree  pagerank 

0      100000  1922         1  0.000022 

1      100001  1922         1  0.000025 

2      100002  1922         4  0.000022 

3      100003  1922         3  0.000023 

4      100004  1922         4  0.000028 

5      100005  1922         6  0.000029 

… 
20073   99994  1922         6  0.000052 

20074   99995  1922         1  0.000020 

20075   99996  1922         0  0.000020 

20076   99997  1922         1  0.000021 

20077   99998  1922         6  0.000029 

20078   99999  1922         3  0.000031 

 

[20079 rows x 4 columns] 

 

3. We created one edgelist data frame, which includes all 250,449 edges in our SCOTUS 

network and another 250,449 edges that are non-present in our SCOTUS network. In reality, 

there are millions of edges that aren’t present in our network, when we consider every 

combination of edge amongst all the vertices. However, to save on run-time when compiling this 

edgelist data frame, we thought an approximation that only contains 250,449 non-present edges 

is sufficient for our logistic regression method later. There are four + number of interested 

metrics columns for our edgelist. In our case, the default four columns would be the “edge,” 

“citing_name,” “cited_name,” and “cited_year.” The interested metric columns would be the 

“cited_indegree” and “cited_pagerank.”  

 

Using igraph’s convenient function to get the entire present edges in our network, 

“G.get_edgelist(),” acquiring the 250,449 present edges and their respective information, such as 

“citing_name,” “cited_name”, and “cited_year” was a straightforward process. As the names 

imply, “citing_name” is the citing case, “cited_name” is the cited case, and “cited_year” is the 

cited case’s year. To denote that these 250,449 edges were present in our SCOTUS network, we 

denoted their “edge” status as 1. To access the metrics, “cited_indegree” and “cited_pagerank,” 

we used the citing case’s year for each edge and acquired the respective vertex data frame. For 

example, if the citing case’s year in one of the edges was 1948, then the decade of the vertex data 

frame we would be interested in would be 1950. Therefore, we would access the V_DF1950 to get 

the “cited_indegre” and “cited_pagerank” because we know that vertex dataframe will contain 

all the cited cases (from the citing case) and their metric information: 



10 
 

 

#determine which vertex_df to retrieve 

decade = citing_year + (10 - citing_year%10) 

vertex_df = vertex_df_dict[decade] 

 

This took approximately 199.434 seconds, according to one of our runs on IPython notebook. 

 

Acquiring the other 250,449 non-present edges wasn’t as straightforward as using igraph’s built-

in function, “get_edgelist().” Instead, we had to take into account of several factors. First, we 

randomly picked two vertices from our pool of vertices without replacement and created an edge 

between these two randomly selected vertices. The non-replacement selection of vertices made 

sure that the edges we select are all unique from each other. This random edge was then checked 

to see if it was actually a present edge in the graph (our goal is acquiring non-present edges!) and 

whether the citing vertex’s year was greater than or equal to the cited vertex’s year (we do not 

want edges that represent citations that go forward in time). Their “edge” status was labeled as 0 

to represent that they were non-present in our SCOTUS network, and all other interested 

information, such as “citing_name,” “cited_name,” “cited_year,” “cited_indegree,” and 

“cited_pagerank” were all acquired in similar fashion like before. This took approximately 

556.497 seconds, according to one of ours runs on IPython notebook. 

 

 

Here is a snippet of our compiled edgelist: 

 
 edge  citing_name  cited_name  cited_year  cited_indegree  cited_pagerank 

0   0       105146       94388        1896               2        0.000021   

1   0       111030       99966        1922              20        0.000049   

2   0       106778       84925        1809               0        0.000016  

3   0       110601      109319        1975               0        0.000012 

4   0       104605       87232        1859               1        0.000020 

5   0      1087630      101060        1927               0        0.000016 

 

4. Using the Python package sklearn (sci-kit), we ran logistic regression once on our edgelist 

data frame. A good reference for logistic regression is looking at the stock market example in 4.3 

of An Introduction to Statistical Learning with Applications in R by James, Witten, Hastie, and 

Tibshirani [9]. As noted by James, et al. logistic regression allows us to calculate the probability 

that a non-quantitative (qualitative) response variable falling into some category, in contrast to 

traditional regression that predicts some quantitative value of an interested response variable. In 

our case, our response variable is whether or not an edge is present between two vertices, 

denoted as 0 or 1 under the edge column of the edgelist data frame. Although binary, qualitative 

response variable can be predicted through linear regression, for the purpose of acquiring 

probability measures that fall between 0 and 1 to use for our rank-scoring implementation later, 

logistic regression seemed more appropriate for our situation. The logistic function for one 

predictor variable as introduced by James, et al. is: 

 

𝑝(𝑋) =  
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
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,where β0 and β1 denote the coefficients that best fit the model and are calculated from given X 

(predictor) and Y (response) training data and using maximum likelihood estimator. 

 

Our models are based off of logistic regression being ran on different training sets. Our 

Y_training_set (response), which is our response variable of whether or not an edge is present 

would not change in this process. However, our X_training_set (predictor), changes depending 

on different combinations of interested centrality metrics. Thus, modifying the X_training_set is 

responsible for producing different logistic regression models. Then, after performing logistic 

regression and acquiring the beta coefficients from some X and Y training sets, we can use these 

coefficients and the logistic function to acquire the probability of an edge that is present in our 

network on some X_testing_set. 

 

5. Step-by-Step Procedure on How We Selected the Best Model: 

1. To compare our models, we first picked 1000 random cases, R1, R2, …, R1000.  

2. For one of these cases (call this Rj), we acquired the vertex data frame corresponding to 

case Rj’s year.  

3. Then we acquired the attachment probabilities with respect to the interested metric(s) for 

all the vertices in the vertex data frame by using the logistic regression coefficients and 

the logistic function.  

4. We added these probabilities as a separate column to the vertex data frame and sorted the 

rows of the vertex data frame by these probabilities in decreasing order (vertices with 

highest metric probabilities are near the top).  

5. This allowed us to use the rank-score system devised by Zanin, et al. [8]. 

a. We acquired Rj’s neighbors (cases Rj cites—they would obviously be in the 

vertex data frame). 

b. Then we ranked these neighbors by their respective indices+1 in the vertex data 

frames (so we essentially ranked them by their metric probabilities because the 

vertex data frame is sorted this way) 

c. We gave a score for each neighbor: 

 

 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 1 − 
𝑟𝑎𝑛𝑘

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑅𝑗
 

 

d. The score for Rj: 

 

     𝑠𝑐𝑜𝑟𝑒𝑅𝑗
= ∑ 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

 

 

e. After we acquired the ranks for R1, …, R1000, we can calculate the score for the 

centrality metric(s): 

 

𝑚𝑒𝑡𝑟𝑖𝑐(𝑠) 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑠𝑐𝑜𝑟𝑒𝑅𝑗

1000

𝑗=1
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We acquired this results for the metric(s) scores: 
Indegree 

this took 9.77799987793 seconds 

Score: 2998.94088151 

 

PageRank 

this took 9.22500014305 seconds 

Score: 2563.98054996 

 

Indegree and PageRank 

this took 10.3090000153 seconds 

Score: 2970.85944083 

 

A snippet of our code for logistical regression and rank-scoring can be found in Appendix A.  

 

The implementation of the rest of our code can be found at: 

 

1. https://github.com/idc9/law-

net/blob/jamesjushchuk/explore/James/module1_vertex_data.ipynb 

2. https://github.com/idc9/law-

net/blob/jamesjushchuk/explore/James/module2_edge_data.ipynb 

3. https://github.com/idc9/law-

net/blob/jamesjushchuk/explore/James/module3_fit_logistical_regression.ipynb 

4. https://github.com/idc9/law-

net/blob/jamesjushchuk/explore/James/module4_get_ranking_metrics.ipynb 

 

10 Future Plans 

 
We intend to improve our algorithm so it may run on bigger networks, such as on the overall 

U.S. legal citation network. Furthermore, our logistic regression and rank score models relied on 

decade approximations, where we only looked at the vertex data frames that represented decade 

jumps in the SCOTUS network. We hope to make our models more precise and rely less on 

approximations through looking at the vertex data frames that represent possibly single year 

jumps in the SCOTUS network. With some algorithm improvemnts, we hope to test our 

implementation for models of more combinations of metrics than just indegree and PageRank, 

such as those analyzed during the PyData conference (closeness, betweenness, eigenvector, 

hubs/authorities) as well as test on metrics that take into account of time-decay. For example, we 

may not want to account citations that are greater than 20 years apart because we may want to 

denote that cases lose too much relevance after some significant amount of time (i.e. the cited 

case may acquire an indegree of 1 from the citing case if and only if 𝑐𝑖𝑡𝑖𝑛𝑔𝑐𝑎𝑠𝑒𝑦𝑒𝑎𝑟
−

𝑐𝑖𝑡𝑒𝑑𝑐𝑎𝑠𝑒𝑦𝑒𝑎𝑟
≤ 𝑠𝑜𝑚𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑖. 𝑒. 10 𝑦𝑒𝑎𝑟𝑠)). We also hope to implement centrality 

measures that aren’t built into igraph and test these as models on our logistic-regression/rank-

score algorithm, such as alpha centrality and dynamic centrality [10]. 

 

 

 

 

https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module1_vertex_data.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module1_vertex_data.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module2_edge_data.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module2_edge_data.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module3_fit_logistical_regression.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module3_fit_logistical_regression.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module4_get_ranking_metrics.ipynb
https://github.com/idc9/law-net/blob/jamesjushchuk/explore/James/module4_get_ranking_metrics.ipynb
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11 Appendix A 

 
def compute_ranking_metrics(G, logistic_regression_object, columns_to_use, 

path_to_vertex_metrics_folder, year_interval, R): 

    ''' 

    Computes the rank score metric for a given logistic regression object. 

 

    Parameters 

    ------------ 

    G: network (so we can get each cases' ancestor network) 

 

    logistic_regression_object: a logistic regression object (i.e. the output 

of fit_logistic_regression) 

 

    columns_to_use: list of column names of edge metrics data frame that we 

should use to fit logistic regression 

 

    path_to_vertex_metrics_folder: we will need these for prediciton 

 

    year_interval: the year interval between each vertex metric .csv file 

 

    R: how many cases to compute ranking metrics for 

  

    Output 

    ------- 

    The average ranking score over all R cases we tested 

    ''' 

     

    #select cases for sample 

    vertices = set(G.vs) 

    cases_to_test = random.sample(vertices, R) 

 

    cases_to_test_rank_scores = [] 

 

    #load all the vertex metric dataframes into a dict so they only have to 

be read in once 

    all_vertex_metrics_df = glob.glob(path_to_vertex_metrics_folder + 

"/vertex_metrics*.csv") 

    vertex_metric_dict = {} 

    for vertex_metrc_df in all_vertex_metrics_df: 

        #add df to dict with filepath as key 

        vertex_metric_dict[vertex_metrc_df] = pd.read_csv(vertex_metrc_df, 

index_col=0) 
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    #calculate each case's score 

    for case in cases_to_test: 

 

        #determine which vertex_df to retrieve 

        year = case['year'] + (year_interval - case['year']%year_interval) 

         

        #look-up that dataframe from given path 

        vertex_df = vertex_metric_dict[path_to_vertex_metrics_folder + 

'\\vertex_metrics_' + str(year) + '.csv'] 

         

        #create df that the logistical regression object will evaluate 

        x_test_df = vertex_df[columns_to_use] 

        attachment_p = get_attachment_probabilty(logistic_regression_object, 

x_test_df) 

 

        # add the attachment probabilities as column 

        vertex_df['attachment_p'] = attachment_p 

        # sort by attachment probabilities 

        vertex_df = vertex_df.sort_values('attachment_p', ascending=False, 

kind='mergesort')#.reset_index(drop=True) 

 

        # get neighbors 

        neighbors = G.neighbors(case.index, mode='OUT') 

 

        # rank and score neighbors using dataframe indices 

        scores = [] # list of scores for each vertex 

        for i in neighbors: 

            rank = vertex_df.index.get_loc(G.vs[i]['name']) + 1 

            score = 1-rank/len(attachment_p) 

            scores.append(score) 

         

        case_rank_score = sum(scores) # sum up the scores for each case 

         

        #add score to list of all cases' scores 

        cases_to_test_rank_scores.append(case_rank_score) 

 

    return np.mean(cases_to_test_rank_scores) 

In [57]: 

def get_attachment_probabilty(logistic_regression_object, x_test_df): 

    ''' 

    Evaluates our logistic regression model for a given dataset. 

 

    Parameters 

    ------------ 



15 
 

    logistic_regression_object: a logistic regression object (i.e. the output 

of fit_logistic_regression) 

 

    x_test_df: columns of vertex_df used in evaluating the logistical 

regression 

 

    Output 

    ------ 

    returns a list of attachment probabilities for the dataset 

    ''' 

     

    # get attachment probabilities on testing set 

    prob = logistic_regression_object.predict_proba(x_test_df) 

     

    # predicted probabilities for ALL case for edge present (1) 

    prob_present = prob[:,1:2] 

    # convert to list 

    prob_present_list = [i.tolist()[0] for i in prob_present] 

     

    return prob_present_list 

Testing above defs 

In [23]: 

def fit_logistic_regression(path_to_edge_data_frame, columns_to_use): 

    ''' 

    Fits our logistic regression model. Any data you need for logistic 

regression should be in the edge data frame 

 

    Parameters 

    ------------ 

    path_to_edge_data_frame: 

 

    columns_to_use: list of column names of edge metrics data frame that we 

should use to fit logistic regression 

 

    Output 

    ------ 

    returns a logistic regression object  

    ''' 

    #set up training data 

    df = pd.read_csv(path_to_edge_data_frame, index_col=0) 

    y_train = df['edge'] 

    x_train = df[columns_to_use] 

 

    #calculate logistical regression 
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    clf = skl_lm.LogisticRegression(solver='newton-cg') 

    clf.fit(x_train, y_train) 

    return clf 

In [24]: 

#This def is not required, I just used it to make excuted code concise 

def load_scotus_graph(): 

    G = load_citation_network_igraph(data_dir, court_name) 

    all_edges = G.get_edgelist() # list of tuples 

    bad_edges = [] 

    for edge in all_edges: 

        citing_year = G.vs(edge[0])['year'][0] 

        cited_year = G.vs(edge[1])['year'][0] 

     

        if citing_year < cited_year: 

            bad_edges.append(edge) 

 

    G.delete_edges(bad_edge 
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